Вариант № 47808

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 91
i

Среди чисел  ко­рень из 9 ; минус 9; дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; минус 0,9;9 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка вы­бе­ри­те число, про­ти­во­по­лож­ное числу 9.



2
Задание № 1299
i

Даны си­сте­мы не­ра­венств. Ука­жи­те номер си­сте­мы не­ра­венств, ко­то­рая рав­но­силь­на си­сте­ме не­ра­венств  си­сте­ма вы­ра­же­ний x боль­ше 3,x\leqslant5. конец си­сте­мы .



3
Задание № 183
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 210°. Най­ди­те гра­дус­ную меру мень­ше­го угла.



4
Задание № 1655
i

Опре­де­ли­те, при каком из зна­че­ний х, рав­ных −3; −1; −2; −9; −5, верно не­ра­вен­ство 270 : х + 50 > 0.



5
Задание № 1590
i

Среди точек С(33), D(24), Е(28), F(43), К(12) ко­ор­ди­нат­ной пря­мой ука­жи­те точку, сим­мет­рич­ную точке А(5) от­но­си­тель­но точки В(19).



6
Задание № 1879
i

Показ филь­ма на­чал­ся в 17 часов 27 минут, а за­кон­чил­ся в 19 часов 12 минут. Ка­ко­ва (в часах) про­дол­жи­тель­ность по­ка­за филь­ма?



7
Задание № 1034
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:



8
Задание № 1881
i

Из точки A к окруж­но­сти с цен­тром O про­ве­де­ны две ка­са­тель­ные AB и AC, где B и C  — точки ка­са­ния. Через точки C и O про­ве­де­на пря­мая, ко­то­рая пе­ре­се­ка­ет ка­са­тель­ную AB в точке M (см. рис.). Най­ди­те гра­дус­ную меру угла 1, если ∠AMC  =  44°.



9
Задание № 39
i

Зна­че­ние вы­ра­же­ния 3 в сте­пе­ни левая круг­лая скоб­ка минус 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка равно:



10
Задание № 1883
i

Ука­жи­те номер пары вза­им­но про­стых чисел.



11
Задание № 1596
i

Из двух пунк­тов, рас­сто­я­ние между ко­то­ры­ми равно S, од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми ско­ро­стя­ми от­прав­ля­ют­ся по те­че­нию реки плот (П) и про­тив те­че­ния реки катер (К). На ри­сун­ке при­ве­де­ны гра­фи­ки их дви­же­ния в те­че­ние часа с мо­мен­та от­прав­ле­ния. Опре­де­ли­те, за сколь­ко минут от на­ча­ла дви­же­ния плот при­дет в пункт, из ко­то­ро­го от­пра­вил­ся катер.



12
Задание № 1309
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=8, \ctg \angle BAC = ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.



13
Задание № 1310
i

Ука­жи­те но­ме­ра урав­не­ний, ко­то­рые не имеют дей­стви­тель­ных кор­ней.

1)   x в квад­ра­те =49;

2)    дробь: чис­ли­тель: 1, зна­ме­на­тель: x в квад­ра­те минус 49 конец дроби =0;

3)   x в квад­ра­те плюс 49=0;

4)   x в квад­ра­те плюс 49x=0;

5)   x в квад­ра­те плюс x минус 49=0



14
Задание № 1041
i

Среди пред­ло­жен­ный урав­не­ний ука­жи­те номер урав­не­ния, гра­фи­ком ко­то­ро­го яв­ля­ет­ся па­ра­бо­ла, изоб­ра­жен­ная на ри­сун­ке:



15
Задание № 225
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен ту­по­уголь­ный тре­уголь­ник ABC с вер­ши­на­ми в узлах сетки (см. рис.). Ко­си­нус угла ABC этого тре­уголь­ни­ка равен:



16
Задание № 1601
i

На одной сто­ро­не пря­мо­го угла О от­ме­че­ны две точки А и В так, что ОА  =  1,7, OB  =  а, ОА < ОВ. Со­ставь­те фор­му­лу, по ко­то­рой можно вы­чис­лить ра­ди­ус r окруж­но­сти, про­хо­дя­щей через точки А, В и ка­са­ю­щей­ся дру­гой сто­ро­ны угла.



17
Задание № 77
i

Если  дробь: чис­ли­тель: 5x, зна­ме­на­тель: y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , то зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 3y плюс 9x, зна­ме­на­тель: 13x минус y конец дроби равно:



18
Задание № 1777
i

SABCD  — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, все ребра ко­то­рой равны 48. Точка M  — се­ре­ди­на ребра SD. Точка N при­над­ле­жит SC, СN : NS  =  1 : 3 (см. рис.). Най­ди­те длину от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M и N па­рал­лель­но ребру SA, пе­ре­се­ка­ет ос­но­ва­ние ABCD пи­ра­ми­ды.



19
Задание № 1892
i

На ко­ор­ди­нат­ной плос­ко­сти дана точка A(5; 3). Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1–6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Если точка В сим­мет­рич­на точке А от­но­си­тель­но оси ор­ди­нат, то рас­сто­я­ние между точ­ка­ми А и В равно ...

Б)  Если точка С сим­мет­рич­на точке А от­но­си­тель­но пря­мой у  =  1, то рас­сто­я­ние между точ­ка­ми А и С равно ...

B)  Если точка N сим­мет­рич­на точке А от­но­си­тель­но точки D(3; −1), то рас­сто­я­ние между точ­ка­ми А и N равно ...

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  8

2)  10

3)  4

4)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та

5)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та

6)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

20
Задание № 110
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 5 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).


Ответ:

21
Задание № 21
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.


Ответ:

22

В че­ты­рех­уголь­ни­ке KMNL, впи­сан­ном в окруж­ность, KM = MN = 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и длины сто­рон KL и LN равны ра­ди­у­су этой окруж­но­сти. Най­ди­те зна­че­ние вы­ра­же­ния S2, где S  — пло­щадь че­ты­рех­уголь­ни­ка KMNL.


Ответ:

23
Задание № 1782
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .


Ответ:

24
Задание № 1609
i

Точки N и М лежат на сто­ро­нах АВ и AD па­рал­ле­ло­грам­ма ABCD так, что AN : NB  =  1 : 2, AM : MD  =  1 : 2. Пло­щадь тре­уголь­ни­ка CMN равна 45. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма ABCD.


Ответ:

25
Задание № 1784
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 18 конец дроби плюс Пи x пра­вая круг­лая скоб­ка = минус 1,5. В ответ за­пи­ши­те уве­ли­чен­ное в 3 раза про­из­ве­де­ние наи­боль­ше­го корня (в ра­ди­а­нах) на ко­ли­че­ство кор­ней этого урав­не­ния на про­ме­жут­ке [3; 9].


Ответ:

26
Задание № 1899
i

Най­ди­те сумму квад­ра­тов кор­ней урав­не­ния 8 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 10x минус 9 конец ар­гу­мен­та =9 минус 10x минус x в квад­ра­те .


Ответ:

27
Задание № 1900
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства

 левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 14 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: x плюс 7 конец дроби пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 28 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: x плюс 7 конец дроби пра­вая круг­лая скоб­ка мень­ше или равно 2 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 56 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: x плюс 7 конец дроби пра­вая круг­лая скоб­ка .


Ответ:

28
Задание № 1901
i

При де­ле­нии на­ту­раль­но­го числа b на 25 с остат­ком, от­лич­ным от нуля, не­пол­ное част­ное равно 9. К числу b слева при­пи­са­ли не­ко­то­рое на­ту­раль­ное число а. По­лу­чен­ное на­ту­раль­ное число раз­де­ли­ли на 20 и по­лу­чи­ли 18 в остат­ке. Най­ди­те число b.


Ответ:

29
Задание № 1682
i

По пря­мым па­рал­лель­ным путям рав­но­мер­но в про­ти­во­по­лож­ных на­прав­ле­ни­ях дви­жут­ся два по­ез­да: по пер­во­му пути  — ско­рый поезд со ско­ро­стью 108 км/ч, по вто­ро­му  — пас­са­жир­ский со ско­ро­стью 68,4 км/ч. По одну сто­ро­ну от путей на рас­сто­я­нии 100 м от пер­во­го пути и 20 м от вто­ро­го рас­тет де­ре­во. Если пре­не­бречь ши­ри­ной пути, то в те­че­ние сколь­ких се­кунд t пас­са­жир­ский поезд, име­ю­щий длину 165 м, будет за­го­ра­жи­вать де­ре­во от пас­са­жи­ра ско­ро­го по­ез­да? В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 15t.


Ответ:

30

На сто­ро­не AB па­рал­ле­ло­грам­ма ABCD от­ме­че­на точка O так, что AB=3AO. К плос­ко­сти ABCD из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO дли­ной 8. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та ко­си­нус альфа , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSCD, если CD = 9,BC = 5 и из­вест­но, что пло­щадь ABCD равна 45.


Ответ:

31
Задание № 1969
i

Не­ко­то­рое ко­ли­че­ство ра­бо­чих оди­на­ко­вой ква­ли­фи­ка­ции вы­пол­ни­ли ра­бо­ту за 14 дней. Если бы их было на 12 че­ло­век боль­ше и каж­дый ра­бо­тал на 1 час в день доль­ше, та же ра­бо­та была бы сде­ла­на за 10 дней. Если бы ра­бо­чих было еще на 18 че­ло­век боль­ше и каж­дый ра­бо­тал еще на 1 час в день доль­ше, то эта ра­бо­та была бы сде­ла­на за 7 дней. Най­ди­те ис­ход­ное ко­ли­че­ство ра­бо­чих.


Ответ:

32

Дан куб ABCDA1B1C1D1 с дли­ной ребра, рав­ной 118. На реб­рах ВС и ВВ1 взяты со­от­вет­ствен­но точки М и N так, что  дробь: чис­ли­тель: BM, зна­ме­на­тель: MC конец дроби = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BN, зна­ме­на­тель: BB_1 конец дроби = дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби . Через точки M, N, A1 про­ве­де­на плос­кость. Най­ди­те рас­сто­я­ние d от точки С до этой плос­ко­сти. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния d2.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.